On the Mild Solutions of Higher-order Differential Equations in Banach Spaces
نویسنده
چکیده
For the higher-order abstract differential equation u(n)(t) = Au(t) + f (t), t ∈ R, we give a new definition of mild solutions. We then characterize the regular admissibility of a translation-invariant subspace of BUC(R,E) with respect to the above-mentioned equation in terms of solvability of the operator equation AX −X n = C. As applications, periodicity and almost periodicity of mild solutions are also proved.
منابع مشابه
Optimal Feedback Control of Fractional Semilinear Integro-differential Equations in The Banach Spaces
Recently, there has been significant development in the existence of mild solutions for fractional semilinear integro-differential equations but optimal control is not provided. The aim of this paper is studying optimal feedback control for fractional semilinear integro-differential equations in an arbitrary Banach space associated with operators ...
متن کامل$L^p$-existence of mild solutions of fractional differential equations in Banach space
We study the existence of mild solutions for semilinear fractional differential equations with nonlocal initial conditions in $L^p([0,1],E)$, where $E$ is a separable Banach space. The main ingredients used in the proof of our results are measure of noncompactness, Darbo and Schauder fixed point theorems. Finally, an application is proved to illustrate the results of this work.
متن کاملOn the Periodic Mild Solutions to Complete Higher Order Differential Equations on Banach Spaces
For the complete higher order differential equation
متن کاملOn the Regularity of Mild Solutions to Complete Higher Order Differential Equations on Banach Spaces
For the complete higher order differential equation u(t) = Σn−1 k=0Aku (t) + f(t), t ∈ R (*) on a Banach space E, we give a new definition of mild solutions of (*). We then characterize the regular admissibility of a translation invariant subspace M of BUC(R,E) with respect to (*) in terms of solvability of the operator equation Σn−1 j=0AjXD j −XD = C. As application, almost periodicity of mild...
متن کاملTheory of Hybrid Fractional Differential Equations with Complex Order
We develop the theory of hybrid fractional differential equations with the complex order $thetain mathbb{C}$, $theta=m+ialpha$, $0<mleq 1$, $alphain mathbb{R}$, in Caputo sense. Using Dhage's type fixed point theorem for the product of abstract nonlinear operators in Banach algebra; one of the operators is $mathfrak{D}$- Lipschitzian and the other one is completely continuous, we prove the exis...
متن کاملOn Mild Solutions Of Nonlocal Semilinear Impulsive Functional Integro-Differential Equations∗
In the present paper, we investigate the existence, uniqueness and continuous dependence on initial data of mild solutions of first order nonlocal semilinear functional impulsive integro-differential equations of more general type with finite delay in Banach spaces. Our analysis is based on semigroup theory and Banach contraction theorem.
متن کامل